首页> 外文OA文献 >Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
【2h】

Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars

机译:从球轴上的轴对称非轴对称发电机模式的过渡   类太阳恒星的对流模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We seek to understand this transition using numerical simulations. We usethree-dimensional simulations of turbulent magnetohydrodynamic convection inspherical shell segments covering the full $360\degr$ longitudinal range andlatitudes within $\pm75\degr$. We consider angular velocities between one and31 times solar. We find a transition from axi- to nonaxisymmetric solutions ataround 1.8 time solar rotation that coincides with the simultaneous change ofthe rotation profiles from antisolar to solar-like ones. In the solar-likerotation regime, the field configuration consists of an axisymmetricoscillatory field accompanied with the first azimuthal mode $m=1$ (two activelongitudes), which also shows temporal variability. At slow (rapid) rotationthe axisymmetric (nonaxisymmetric) mode dominates. The axisymmetric modeproduces latitudinal dynamo waves with polarity reversals, while thenonaxisymmetric mode often exhibits a drift in the rotational reference frameand the strengths of the active longitudes change cyclically over time betweenthe different hemispheres. The latter two phenomena are azimuthal dynamo waves.In the majority of cases we find retrograde waves -- in disagreement withobservations. In an activity--period diagram, the cycle lengths normalized tothe rotation period fall on clearly distinct branches as a function of rotationor magnetic activity level. We can clearly identify the inactive branch, butthe active and superactive branches appear to be merged into one. As therotation rate increases, the length scale of convection is decreasing, and thesupercriticality of convection is decreasing. The results presented are thefirst step to understand dynamos in stars with vastly varying rotation rates,with many new findings, but they also clearly indicate the need forhigh-resolution simulations in a more supercritical regime with grids thatcover full spheres.
机译:我们试图通过数值模拟来理解这种转变。我们使用三维磁流体对流非球面壳段的三维模拟,覆盖整个$ 360 \ degr $纵向范围和纬度在$ \ pm75 \ degr $之内。我们考虑太阳角速度的1到31倍之间。我们发现,在太阳旋转大约1.8倍时,从轴对称解过渡到非轴对称解,这与旋转轮廓从反太阳到类似太阳的同时变化相吻合。在类似太阳的自转状态下,场结构由轴对称振荡场和第一方位角模式$ m = 1 $(两个有效经度)组成,这也显示了时间变化。在慢速(快速)旋转时,轴对称(非轴对称)模式占主导。轴对称模式产生具有极性反转的纬向发电机波,而轴对称模式则经常在旋转参考系中表现出漂移,并且不同半球之间的经度强度随时间周期性地变化。后两个现象是方位发电机波,在大多数情况下,我们发现逆行波-与观测结果不一致。在活动周期图中,归一化为旋转周期的周期长度根据旋转或磁活动水平落在明显不同的分支上。我们可以清楚地识别出非活动分支,但活动分支和超活动分支似乎合并为一个。随着旋转速度的增加,对流的长度尺度减小,对流的超临界减小。提出的结果是了解自转速率差异很大的恒星动力的第一步,并有许多新发现,但它们也清楚表明需要在一个超临界状态下使用覆盖整个球体的网格进行高分辨率模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号